Home -> Overview of animations -> Teaching animation: Visualization of the lens equation

Teaching animation: Visualization of the lens equation

The interactive animation represents the geometric relationships described by the lens equation.

Click your mouse to zoom the rectangle in or out.

The animation was originally developed as a offline application for Windows and Macintosh systems and for integration into Microsoft PowerPoint slides. The online version presented here serve as a preview. The exe or app file can be downloaded free of charge from members area.

Download

After the download, the animation can be shown in full screen mode. Integration into PowerPoint is also possible.

Description

The animation contains two areas with the following content:

AreaDescription
leftExample of an optical mapping with the most important rays
rightMathematical laws written as formulas

The focal length of the lens and the object height can be freely adjusted via two controls. All elements shown are adjusted in real time.

Legend

$f$: Focal length of the lens
$g$: Object distance
$b$: Image distance
$G$: Object height
$B$: Image height

Formulas

The lens equation (also Newtons equation) is:

$$\frac{1}{f} = \frac{1}{g} + \frac{1}{b}$$

$f$: Focal length of the lens
$g$: Object distance
$b$: image distance

General information

Title:Teaching animation: Visualization of the lens equation
Target group:
  • Teachers and lecturers
  • Independent learners
Platforms (primary):
  • Microsoft® Windows®
  • Microsoft® PowerPoint®
  • Apple® Macintosh®
Features
  • Resizable without the loss of visual clarity
  • No installation required
DocumentsLicensing Information
About Flash Player security

Further animations for PCs

Die Animation zeigt ein Medium, das von einem Lichtstrahl angestrahlt wird. Die Form des Mediums kann verändert werden. Je nach Auftreffwinkel wird das Licht unterschiedlich reflektiert.
Reflection law

Die Animation zeigt eine Linse, die einen Lichtstrahl fokussiert. Jeder Farbanteil des Lichts bildet einen anderen Fokuspunkt.
Principle of chromatic aberration

Die Animation zeigt eine Linse, das einen Lichtstrahl fokussiert. Aufgrund der sphärischen Aberration entstehen unterschiedliche Fokuspunkte.
Principle of spherical aberration

Die Animation zeigt eine Linse, dessen numerische Apertur interaktiv verändert werden kann. In Abhängigkeit von der numerischen Apertur verschiebt sich der Brennpunkt der Linse.
Concept of numerical aperture

Sources

Feedback

You found a mistake and want to help us improve? Please let us know. We would also appreciate any suggestions to improve text and/or translation.







* Not mandatory