Home -> Overview of animations -> Teaching animation: Principle of spherical deviation

Teaching animation: Principle of spherical deviation

The animation represents the principle of spherical deviation. A lens is shown, which focuses several light beams. Depending on the impact point of the lens, different focal points occure.

In order to make the deviation better visible, the area of the focus points can be zoomed in.

The animation was originally developed as a offline application for Windows and Macintosh systems and for integration into Microsoft PowerPoint slides. The online version presented here serve as a preview. The exe or app file can be downloaded free of charge from members area.



When the surface of a lens has the shape of a segment of a circle, the focal points of parallel incident beams are not exactly in the same position. The focal length of the inner rays is slightly larger than the focal length of the outer rays. In the animation, this phenomenon can be observed by zooming the focal point.

The spherical deviation is correctly calculated in the animation. This realistic animation illustrates that the spherical deviation is minimal, but still exists.

The two outside rays are shown first in the animation. The deviation becomes visible as soon as the inner rays are overplayed.

General information

Title:Teaching animation: Principle of spherical deviation
Target group:
  • Teachers and lecturers
  • Independent learners
Platforms (primary):
  • Microsoft® Windows®
  • Microsoft® PowerPoint®
  • Apple® Macintosh®
  • Resizable without the loss of visual clarity
  • No installation required
DocumentsLicensing Information
About Flash Player security

Further animations for PCs

Die Animstion zeigt ein flüssiges Medium, das von einem Lichtstrahl durchdrungen wird. In Abhängigkeit von der Brechzahl wird der Lichtstrahl unterschiedlich stark gebrochen
Snelliussches Brechungsgesetz

Die Animation zeigt eine Linse, die einen Lichtstrahl fokussiert. Jeder Farbanteil des Lichts bildet einen anderen Fokuspunkt.
Principle of chromatic aberration

Die Animation zeigt eine Linse, dessen numerische Apertur interaktiv verändert werden kann. In Abhängigkeit von der numerischen Apertur verschiebt sich der Brennpunkt der Linse.
Begriff der numerischen Apertur


Authoring tool: Adobe Animate


You found a mistake and want to help us improve? Please let us know. We would also appreciate any suggestions to improve text and/or translation.

* Not mandatory