Home -> Overview of animations -> Introduction to differential and integral calculus

Introduction to differential and integral calculus

The animation illustrates the basic mathematical relationship between a derivation function and a master function.

The curve in the upper right area describes the position of the object. The shape of the curve can be interactively changed with the mouse. The first derivation function refers to the speed, the second to the acceleration. Both derivation functions adapt automatically when the master function is changed.

The animation was developed as a offline application for Windows and Macintosh systems and for integration into Microsoft PowerPoint slides. The online version presented here serves as a preview. The exe or app file can be downloaded free of charge in the member area.

Download

Description

The curve, which describes the distance of the object, can be interactively changed with the mouse. The start and end points are simply moved with the mouse. The slopes are set with the other points.

In the representation of the moving object in the upper left area, the acceleration is represented by a vector arrow.

General

Title:Introduction to differential and integral calculus
Target group:
  • Teachers and lecturers
  • Self-learners
Platforms (primary):
  • Microsoft® Windows®
  • Microsoft® PowerPoint®
  • Apple® Macintosh®
Features
  • Enlargeable without loss
  • No installation required
DocumentsLicense Information
About Flash Player security

Tips

In the representation of the moving object in the upper left area, the acceleration is represented by a vector arrow.

Advanced animations for PCs

Die Animationn zeigt ein rechtwickliges Dreieck. Ein Eckpunkt kann verschoben werden. Die Quadrate, die aus den drei Seiten gebildet werden, passen sich automatisch an.
Pythagorean theorem

Die Animation zeigt ein rechtwickliges Dreieck. Der Eckpunkt kann entlang eines Kreises verschoben werden. Die entsprechenden Funktionswerte werden auf der Sinus- und Kosinuskirve markiert.
Sine and cosine theorem

Die Animation zeigt eine Kurve, deren Form mit der Maus verändert werden kann. Die Ober- und Untersumme wird automatisch im Bereich des Integrals eingezeichnet.
Basis of the integral calculus

Further animations for smartphones / tablets


Geometric relationships at the quadrangle


Basic principles of differential and integral calculus

Sources

Authoring tool: Adobe Animate

Feedback

Is there a mistake? Do you want to make an improvement? Please let us know. We would also be pleased to receive suggestions for improvement on text and / or translation.







* Not obligatory