Home -> Overview of animations -> Introduction to differential and integral calculus

Introduction to differential and integral calculus

The animation illustrates the mathematical relationship between a derivation function and a master function.

The curve in the upper right area defines the position of the object. The shape of the curve can be changed with the mouse. The first derivation function refers to the speed, the second to the acceleration. Both derivation functions adapt automatically when the master function is changed.

The animation was originally developed as a offline application for Windows and Macintosh systems and for integration into Microsoft PowerPoint slides. The online version presented here serve as a preview. The exe or app file can be downloaded free of charge from members area.

Download Windows

Download Macintosh


The curve, which describes the distance covert by the object, can be manipulated using the mouse. The start and end points can be moved. The slopes are adjusted with the other markers.

In the illustration of the moving object in the upper left area, the acceleration is represented by a vector arrow.

General information

Title:Introduction to differential and integral calculus
Target group:
  • Teachers and lecturers
  • Independent learners
Platforms (primary):
  • Microsoft® Windows®
  • Apple® Macintosh®
  • Resizable without the loss of visual clarity
  • No installation required
DocumentsLicensing Information


In the illustration of the moving object in the upper left area, the acceleration is represented by a vector arrow.

Further animations for PCs

Die Animationn zeigt ein rechtwickliges Dreieck. Ein Eckpunkt kann verschoben werden. Die Quadrate, die aus den drei Seiten gebildet werden, passen sich automatisch an.
Pythagorean theorem

Die Animation zeigt ein rechtwickliges Dreieck. Der Eckpunkt kann entlang eines Kreises verschoben werden. Die entsprechenden Funktionswerte werden auf der Sinus- und Kosinuskirve markiert.
Sine and cosine theorem

Die Animation zeigt eine Kurve, deren Form mit der Maus verndert werden kann. Die Ober- und Untersumme wird automatisch im Bereich des Integrals eingezeichnet.
Fundamentals of the integral calculus

Further animations for smartphones/tablets

Geometric relationships on a square

Basic principles of differential and integral calculus


Authoring tool: Adobe Animate


You found a mistake and want to help us improve? Please let us know. We would also appreciate any suggestions to improve text and/or translation.

* Not mandatory